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The ground state energy, pressure and compressibility of solid 3He 
at high pressures. 

Abstract. The ground state energy, pressure and compressibility of solid aHe were 
calculated in the molar volume range 12 to 18 cm3 using the improved selfconsistent 
phonon theory of Goldman et at. A soft core potential due to Beck was used and 
relatively good agreement was obtained with experiment for the pressure and 
compressibility. 

In a recent paper (Chell 1970, to be referred to as 1) we calculated the compressibility of 
solid 3He and 4He in the molar volume range 12 to 18 cm3. Selfconsistent phonon theory 
(SCP) was used and short range correlations (src) were omitted. A nearest neighbour 
interaction, face centred cubic model was used. We gave reasons for believing that for 
isotropic crystal properties this model reproduces the main features of a hexagonal close 
packed model. In this letter we wish to report on the extension of the calculations for solid 
3He. 

First, instead of the Lennard-Jones (12-6) (L-J) potential a new potential, 1> (r), due to 
Beck (1968) was used in the calculations where 

0·869 ( 2·709 + a2
) 

1>(r) = Aexp( - ar - f3r 6
) - (r 2 + a2)3 1 + r2 + a2 

with a = 0·675 A, a = 4·390 A-I, f3 = 3·746 X 10-4 A -6 and A = 398·7 eV. 
This potential has several advantages over the L-J potential. It has a nonsingular core 

at the origin which made accurate calculations possible over the complete molar volume 
range considered. The difficulties arising from the singular core in the L-J potential have 
been discussed in 1. 

The ground state energy of body centred cubic 3He has been computed by Glyde (1971) 
using both the Beck and L-J potentials. The former gave a lower ground state 
energy than did the latter. Lastly, but not least, the Beck potential was fitted to experimental 
and theoretically determined potentials down to an internuclear separation of O· 5 A and 
thus reproduces the repulsive part of the He-He potential more accurately than the L-J. 
Secondly, the calculations were extended to include all neighbour interactions, a necessary 
step if the ground state energy is to be determined accurately over the volume range con­
sidered. Thirdly, the leading second order correction, !1F, to the first order SCP energy, 
F sc, was included in the calculations using the improved selfconsistent approximation (ISC) 
introduced by Goldman et al. (I 968). In this letter the notation and definitions of I and 
Goldman et al. (1968) are used wherever possible. We have 
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The exact effective wave function cPk is then used as a trial function in the variational 
formula (4). The two T{} terms cancel each other and (4) becomes simply Ex ~ tfx.llx 
is first expressed in terms of a/If) (q =f= 0), deleting third and higher order terms. The result 
is Exo+ EA + EB with 

occ 
EA = - 20 ~~' a/(k) a,/k') {v(k + k' + q) + v(k - k') } (8) 

kk' q 

occ 
EB = - 20 ~ ~' ia,ik)i2 {v(k + k' + q) - v(k - k')}. 

kk' q 

The approximation (7) is then substituted in equation (8), the resulting expression being 
exact up to 0(,\2). IIx then has the form (5), with the same Exo. The inequality (4) (with 
ifJk = cPk) must be true for every value of ,\ and nq/,\. We then get the important result 

7TAB(q) 
X(q) ~ XI(q) - - - ( )2 (9) 

7TO q 

with 

7T AB = 7T A + 7TB 

and 

7TA = [4m] 2 ~ v(k + k' + q) + v(k - _ k') 
1i2 kk' (q2 + 2q. k) (q2 + 2q • k') 

(10) 

7TB = [4m]2 ~ v(k + k' + q) - v(k - k'~. 
1i2 kk' (q2 + 2q. k)2 

The integrals 7TA,B are identical to the two first order polarization graphs (exchange and 
self energy graphs). The numerical values of 7T AB(q)/7T AB(O) were given by Geldart and 
Taylor (1970) for q ~ 2kF. Their method is used in I to obtain 7T AB in the range q > 2kF. 
The screening function 7TI corresponding to XI is identical to the expression proposed by 
Geldart and Taylor, who use first order perturbation theory, with an arbitrary interpolation 
procedure to include the effect of the higher HF graphs. This interpolation is done here 
in a natural way when solving the HFKS equations. 

Another advantage of the present variational method is that it leads to the useful inequa­
lity (9). Bounds for €(q) and €(q) follow from the exact formulas (1) and (2) 

E(q) ~ €I(q) (ll) 

(12) 

where Er and £r are given in terms of XI by the same formulas. 
The behaviour of Xr(q) is established in 1. Xr( < 0) is exact when q ~ 0 and q ~ 00, and 

presents a sharp minimum for q "" 1·9 kF. The exact X(q) has necessarily the same beha­
viour, in qualitative disagreement with the approximations proposed by Hubbard (1957), 
Kleinman (1967) and many other authors. The very interesting method of Singwi et al. 
(1968), also used by Shaw (1970), leads to an incorrect behaviour in the range q < 2kF, 
when applied in the HF framework (formula (22) of Singwi et at.). Herman et at. (1969) 
introduced an inhomogeneity correction to VXKS in a semiempirical way. It is shown in 
I that the corresponding effective exchange interaction is in qualitative agreement with 
our results in the range q < 2kF but is quite wrong, of course, when q ~ 2kF, which is a 
quite significant range in solid state calculations. 
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system. This method will be refered to as the HFKS method. It involves a local effective 
exchange potential Vx = SEx[n]/Sn(r) where the effective exchange energy Ex is a univer­
sal functional of the electron density nCr). Only approximate forms of Ex and Vx are 
known. The Kohn and Sham approximation VXKS (= 2/3 Slater's potential) is valid for 
electron systems with slowly varying density (as in heavy atoms) but cannot be used in 
principle in band calculations where wave numbers q larger than kF are quite significant 
(Geldart and Vosko 1966). 

The HF test particle static dielectric function €(q) and the HF electron dielectric func­
tion E(q) of a homogeneous electron gas (Kleinman 1967, Shaw 1970) are directly related 
to the HF density response to an external potential. They are exactly given by the linearized 
HFKS equations, since the Kohn and Sham method allows an exact calculation of the 
ground state HF energy functional and its derivatives, such as the density and the Fermi 
level. A simple calculation (Harrison 1969) gives 

v(q) 7To(q) 
€(q) = 1 + 1 + X(q) 7To(q) 

£(q) = 1 + {v(q) + X(q)}7TO(q) 

(I) 

(2) 

where v(q) is the direct interaction function 4rre2Jq2, 7To(q) the RPA static screening function 
and X(q) the effective exchange interaction defined by equation (5) below. 

We use a new variational method for Ex[n] (Dagens 1971; this paper will be referred to 
as I), to derive an upper bound for X(q) and, as a consequence, a lower bound for €(q) and 
upper bound for E(q), which are exact in the HF scheme. 

An inequality verified by Ex[n] is given first. The derivation is given in 1. The exact 
solution of the HFKS equation is known to be a functional 4>,,[n j of nCr) (Hohenberg and 
Kohn 1964) which satisfies identically equation (3). Let tP,,[n] be a trial wave function 
which satisfies 

oce oce 
~ I .p,,[n] 12 = n = ~ 1 4>k[n]12. (3) 
ku ku 

We denote by ~x{.p,,} the well known expression of the true exchange energy and by 
T {.p,,} the total kinetic energy. The fundamental formula is then 

(4) 

The equality is obtained when the trial wave function is identical (as a functional of n) to 
the exact HF wave function. The second member is then stationary. It must be noted that 
the value of Ex is generally not equal to the true exchange energy. 

We consider an electron gas perturbed by a small external potential AVo(r). The effective 
exchange energy Ex[n] can be written (Harrison 1969) as 

Ex[n] = ExO(no) + ~~' Inql2 X(q) + 0(A3) 
q 

(5) 

where ExO(no) is the exchange energy of the homogeneous system and X(q) the effective 
exchange interaction. The summation is over all nonzero wave vectors q, and nq is the 
Fourier coefficient of the density (mean value of nCr) exp( - iq.r). Let aq(k) be the Fourier 
coefficient of 4>k exp( - ik.r), with the following normalization 

ao(k)2 = 1 - ~'laq(k)12. (6) 
q 

aik) and nq are known to be first order quantities in A. A simple calculation leads to 

_2m ~ ~ (2) 
aq{k) - n2 Ik + ql2 _ k27TO(q) + 0 A (7) 

when q ¥= O. 
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example, by comparing the calculations of Hurst (1959) for LiH with the observed structure 
factors, Calder et al. (1962) obtained R = 0·02 which shows an order of magnitude better 
agreement. 

Phillips and Weiss (1969) measured the Compton profile of LiH using Mo Koc X rays 
scattered along three different crystallographic directions. Since they did not obtain ap­
preciable anisotropy, they averaged their results over the three directions. The Compton 
profile is the projection of the electron momentum distribution on the direction of the 
momentum transfer. It is given by 

CX> 

J(POz) = 2'IT J I X(Po) I 2podpo (4) 

Po. 

where Poz is the projection of the initial electron momentum po on the momentum transfer 
direction z. Assuming s like wave functions, we have 

CX> 

x{Po) oc f P(r)jo{por)rdr (5) 

o 

We calculated the Compton profile of LiH using equation (4) and (5), and the wave functions 
of Kunz. In figure 1 we compare these calculations with the experimental curve of Phillips 
and Weiss. It is seen again that there is marked disagreement b~tween experiment and the 
wave functions calculated by Kunz. 
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Bounds for the Hartree-Fock effective exchange interaction and 
the static dielectric constants 

Abstract. We use a variational form of the Kohn and Sham general effective exchange 
energy to derive an upper bound for the effective exchange interaction. Exact bounds 
(within the Hartree-Fock scheme) are deduced for the usual (test particle) static 
dielectric constant and the electron-dielectric constant. 

Kohn and Sham (1965) showed that a Hartree-Fock-Slater like method (Slater 1951) 
allows an exact calculation of the Hartree-Fock (HF) ground state energy of an electron 



L172 Letters to the Ed itor 

Anisotropy of the cubic Fe3S4 induced in an electrostatic field 

Abstract. A synthetic iron sulphide of spinel type became anisotropic when immersed 
in an electrostatic field. Analysis of the electron diffraction patterns observed from 
the FeaS4 specimens showed that a preferred induction took place at about 313 K 
along the [111] axis in the crystal. This anisotropy became negligibly small over about 
373 K. 

An aqueous suspension of synthetic iron sulphide (FeaS4, space group: Fd3m, spinel 
structure, ao = 9·87 A) was smeared on a smooth surface of mica lamina, about 3 X 3 X 
0·1 mm3 in size. The thickness of the sulphide layer deposited was about one micron. The 
specimen was then investigated in terms of electron diffraction. The disposition of the ex­
periment is illustrated in figure 1. A monoenergetic electron beam served for charging up the 

Electron 

Figure 1. This shows the FeaS4 layer deposited on a mica surface. A monoenergetic 
electron beam plays three roles, to charge up the mica layer, to heat the suJphide film 

and to undergo diffraction at it. E is the electrostatic field. 

specimen with electrons (Yamaguchi 1966), for heating it by means of electron bombardment 
(Yamaguchi 1962), and for carrying out the diffraction experiments (Yamaguchi 1968). 

The diffraction patterns observed are shown in figures 2 and 3,which correspond to the 

Figure 2. This shows the diffraction pattern from the sulphide specimen in figure 1. At 
a temperature of about 313 K. The reference pattern of gold is superimposed on the 
specimen pattern, and the (333) reflection from the sulphide shows a preferred 
displacement. Wavelength of the electrons: 0·0440 A (75 kV), camera length: 50 cm. 
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Also included in the figures are the theoretically calculated values of Horner (1970), who 
used a L-J potential and summed ladder diagrams to all orders to produce src, and the 
results of experiments. 

From the results several conclusions and comments can be made. Although I'::!.F changes 
the SCP ground state energy considerably (see figure 1) it produces very little change in the 
volume derivatives of the free energy (the SCP pressure and compressibility are not shown 
in figures 2 and 3 as their difference between the ISC values is so small that their inclusion 
would only detract from the clarity of the graphs). The pressure and compressibility are in 
relatively good agreement with experiment. We found that the compressibility curve 
calculated in this work lay virtually on top of the 3He curve that was calculated in I using 
the L-J potential. For this reason that curve is not reproduced here. The SCP ground 
state energy is far too high. 6.F is of the right sign and magnitude to lower the energy and 
produce a value closer to Horner's (1970) result. It must be noted, however, that since I'::!.F 
is large compared with Fsc (nearly half its value at 18 cm3) the original philosophy of ISC of 
treating it like a perturbation on the SCP free energy is questionable. The contribution of 
the next to the leading term of the second order theory, involving the fourth order force 
constant squared, might also be substantial. It is interesting to note, however, that this 
term is also likely to contribute a negative energy and lower the ISC ground state energy 
even more. 

The use of the soft core Beck potential removed the computational difficulties involved in 
the hard core L-J potential calculations. Accurate numerical results could be obtained 
over the full volume range considered without recourse to src. Nevertheless the deep 
penetration of the SCP Gaussian wavefunction into the core of the repulsive part of the 
helium potential is physically unrealistic, and, we believe, is one of the major reasons for the 
very high value obtained for the ground state energy using SCPo SCP theories that include 
src (see for example Koehler ]967) lower the ground state energy considerably. These 
theories clearly contain greater anharmonicities than are involved in SCP alone and this 
is illustrated somewhat in the present work where higher order anharmonic terms have 
been included in SCP within the framework of ISC. 
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Figure 2, Pressure against molar volume for 3He. Curve A, Horner (1970); curve B, 
PISC, present paper; curve C, Experiment (Dugdale and Franck 1964). 
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Figure 3. Compressibility against molar volume for 3He. Curve A, Horner (1970); 
curve B, XISC, present paper; curve C, Experiment (Dugdale and Franck, ] 964); 
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Fsc = iN ~ <4>k)sc + ~ (fqS - iUqs) 
k qs 

and 

where 

and 

W12a = (ntnz + nZn3 + nanl + til + nz + na) (WI + wz + wa)-l 

+ 3 (n2na + nanl - nlnZ + na) (WI + w2 - wa)-l 

'I' (1,2,3) = - 4i ~ exp {i(ql + qz + qa) • Rk/2 }sin (tql • Ric) 
k 

X sin (tqz. Ric) sin (iqa . Ric) eO((I)ep(2)ey(3) <4>a~)sc 

The ISC free energy, FISC = Fsc + !1F. 

(1) 

(2) 

With these changes the ground state energy, pressure and compressibility of solid 3He 
were calculated in the molar volume range 12 to 18 cm3. In the computations it was found 
necessary to smear up to and including the third neighbours only, the effects of smearing 
the force constants beyond this point were negligible. !1Fwas calculated using the frequencies 
of the all neighbour model but including only nearest neighbours in the lattice sums. 

The contribution, !1P, of !1F to the pressure, PISC, and !1B, to the bulk modulus, Blse, 
and hence the compressibility XISC, were determined by numerical differentiation using the 
expressions 

(
aFISC) 

PISC = - av T = Psc + M 

and 

BISC = V (i3Z
FISC) = _ V (i3PISC) 

i3Vz T i3V T 
(3) 

= Bsc + 60B = XISC-1. 

Subscript ISC refers to quantities calculated using the improved selfconsistent theory. 
Psc was determined from the expression given in equation (2.2) of I, and Bsc by numerical 
differentiation of Pec using equation (3). The results are shown graphically in figures 1 to 3. 
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Figure 1. Ground State energy of3He against molar volume. Curve A, Horner, (1970); 
curve B, FlSC = Fse + AF, present paper; curve C, Fse, present paper. 
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